Inorganic metal salts as additives in the design of cellulose/arabinogalactan hydrogels for prolonged delivery of simvastatin in simulated bio‐fluids

Author:

Agrawal Reshu1,Yadav Harsh1,Patel Jwala1,Sulakhiya Kunjbihari1,Maiti Sabyasachi1ORCID

Affiliation:

1. Department of Pharmacy Indira Gandhi National Tribal University Amarkantak, Madhya Pradesh India

Abstract

AbstractIn this study, carboxymethylcellulose and arabinogalactan were used to create an interpenetrating network (IPN) hydrogel system in the presence of AlCl3 alone or in combination with ZnSO4 salts. Ionotropic gelation caused the polymer sol droplets to transform into hydrogel particles in the presence of salts. The impact of salts on hydrogel properties was evaluated in terms of morphology, drug entrapment efficiency, swelling, and drug release kinetics. The cellulose IPN hydrogel particles containing 50% arabinogalactan looked spherical with evidence of surface folding when treated with AlCl3. Surface folding was reduced by an additional treatment with ZnSO4. Following treatment of the IPN particles with dual salts, a maximum drug entrapment efficiency of 88.77% was obtained. Surface erosion, as seen with aluminum‐IPN hydrogel particles, was minimized with the use of mixed salts as gelation medium. Furthermore, the use of mixed salts allowed the hydrogel particles to swell and consistently release simvastatin in simulated gastrointestinal fluids for up to 9 h. Thermal and x‐ray analyses revealed that the crystallinity of the drug reduced considerably after entrapment in the IPN hydrogel matrix. The infrared spectra analysis did not indicate any evidence of drug polymer interaction. The release of drug from the IPN hydrogel particles followed non‐Fickian diffusion mechanism. The dual metallic salts were found to be effective in creating physically stable cellulose‐arabinogalactan IPN hydrogel particles for sustained release of simvastatin in a varying pH environment of gastrointestinal tract.Highlights Dual inorganic salts allowed synthesis of cellulose/arabinogalactan hydrogel Additional use of ZnSO4 improved surface morphology of hydrogel particles Compatible environment of hydrogels allowed more than 88% drug entrapment Concentration of neutral arabinogalactan was crucial in dictating drug release Mixed salts controlled swelling and release of simvastatin from hydrogels

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Polymers and Plastics,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3