A climatological overview of surface currents in the Arabian Gulf with special reference to the Exclusive Economic Zone of Qatar

Author:

Mussa Afnan Abdirashid1,Aboobacker Valliyil Mohammed1ORCID,Abdulla Cheriyeri Poyil1,Hasna Varis Mohammed1,Al‐Ansari Ebrahim M. A. S.1,Vethamony Ponnumony1

Affiliation:

1. UNESCO Chair in Marine Sciences, Environmental Science Center Qatar University Doha Qatar

Abstract

AbstractThis study derives the climatology of surface currents in the Arabian Gulf using the current velocities obtained from the Copernicus Marine Service (CMEMS) for the period 1993–2019. It reveals distinct temporal and spatial variability in the surface current speeds induced by the variability in surface winds, bathymetry and the changes in the lateral gradients in density. The mean speed of the Iranian Coastal Current (ICC) during summer reaches up to 0.33 m·s−1 along the coast of Iran, while the mean speed of Arabian Coastal Current (ACC) reaches up to 0.26 m·s−1 along the coast of Saudi Arabia. We found the occurrence of 2 major and 1 minor cyclonic eddies in the annual, seasonal and monthly climatology, while these eddies are more prevalent during summer. The major cyclonic eddy in the central Gulf develops in May and persists till November with varying patterns, and decays in December. The climatological mean current speeds are higher during summer compared to winter, due to the seasonal changes in thickness of the surface layer by the stratification/destratification processes. The highest mean current speeds along the coast of Qatar are found in June and the lowest in winter months. The highest annual, monthly and seasonal mean current speeds are observed along the north and northeast coast of Qatar, while the lowest are observed along the west coast and southeast coast of Qatar. Interannual variability in surface current speeds is evident, with notable links with the El Niño–Southern Oscillations (ENSO) and Indian Ocean Dipole (IOD). The annual mean current speeds show positive trends, of the order of 0.06–0.14 cm·s−1·year−1 in the offshore regions and 0.05–0.24 cm·s−1·year−1 in the nearshore regions, wherein the highest positive trend is observed off Ras Laffan and the lowest off Dukhan.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3