Reducing the generation time in winter wheat cultivars using speed breeding

Author:

Schoen Adam1,Wallace Sydney1,Holbert Meghan Fisher1,Brown‐Guidera Gina2,Harrison Stephen3,Murphy Paul2,Sanantonio Nicholas4,Van Sanford David5ORCID,Boyles Richard6ORCID,Mergoum Mohamed7ORCID,Rawat Nidhi1ORCID,Tiwari Vijay1ORCID

Affiliation:

1. Department of Plant Sciences and Landscape Architecture University of Maryland College Park Maryland USA

2. Department of Crop and Soil Sciences North Carolina State University Raleigh North Carolina USA

3. School of Plant, Environmental, and Soil Sciences Louisiana State University Baton Rouge Louisiana USA

4. School of Plant and Environmental Sciences Virginia Tech Blacksburg Virginia USA

5. Department of Plant and Soil Sciences University of Kentucky Lexington Kentucky USA

6. Pee Dee Research & Education Center Clemson University Florence South Carolina USA

7. Institute of Plant Breeding, Genetics, and Genomics University of Georgia Griffin Georgia USA

Abstract

AbstractReducing generation time is critical to achieving the goals of genetic gain in important crops like wheat (Triticum aestivum). Speed breeding (SB) has been shown to considerably reduce generation times in crop plants. Unlike spring wheat cultivars, winter wheat varieties require typically 6–9 weeks of cold treatment, called vernalization, for flowering which extends the generation time for the development of improved winter wheat cultivars. Here, we optimized the SB method using a set of 48 diverse soft red winter wheat (SRWW) cultivars by testing vernalization duration, light and temperature requirements, and the viability of seeds harvested after different durations post‐anthesis under extended daylight conditions. We have found that using a 22‐h setting (22 h day/2 h night, 25°C/22°C) in high‐density 50‐cell trays results in rapid generation advancement. We used genotypic data for a panel of soft red winter wheat varieties from the regional programs to determine the impact of photoperiod and vernalization alleles on the efficiency of the SB approach. Using a set of 48 SRWW cultivars and germplasm from Maryland and four other public breeding programs, we establish that this protocol can allow for the advancement of four generations per year in controlled conditions for winter wheat varieties, experimental lines, or emerging cultivars. Our work shows the potential to reduce generation time by ∼30 days per generation faster than what had been reported in the SB strategies for winter wheat, thus allowing for a quicker turnaround time from original cross to genetically stable experimental genotypes that can be tested in field settings.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3