Linear extension and calcification rates in a cold‐water, crustose coralline alga are modulated by temperature, light, and salinity

Author:

Gould Jessica1ORCID,Ries Justin B.1ORCID

Affiliation:

1. Department of Marine and Environmental Sciences Northeastern University Nahant Massachusetts USA

Abstract

AbstractLong‐lived crustose coralline algae are important ecosystem engineers and environmental archives in regions where observations of climate variability are sparse. Clathromorphum compactum is a cold‐water alga that precipitates calcite that serve as archives of change at annual to sub‐annual resolution. Understanding how environmental variability impacts the growth of this species is imperative for application in paleoclimate research, and for evaluating its vulnerability to change. Here, we present the results of the first, to‐our‐knowledge, controlled laboratory experiment isolating the effects of light, temperature, and salinity on calcification rates of C. compactum. Algal calcification rates were modulated by a combination of light exposure, salinity, and temperature, where temperature and salinity were positively correlated, and light level was negatively correlated with calcification rate. Linear extension of the skeleton also varied with treatment conditions, with the epithallial and perithallial layers of skeleton responding differently. Epithallial extension increased with salinity, while perithallial extension was governed only by a positive parabolic relationship with temperature. These results suggest that C. compactum growth will be impacted by environmental changes predicted for the Arctic over the coming decades. While increased temperature in the region may facilitate calcification in the algae, reductions in salinity associated with increased sea ice melt, and potentially increased light levels, may counteract this effect. The negative impact of increased light levels on algal calcification observed may not reflect the true impact of light availability on growth associated with a lengthening of the growing season (not evaluated in this study) accompanying reductions in annual sea‐ice.

Funder

MIT Sea Grant, Massachusetts Institute of Technology

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3