High‐throughput study of X‐ray‐induced synthesis of flower‐like CuxO

Author:

Hu Qingyun12ORCID,Zhu Lingyue12ORCID,Zhuang Genmao12,Wang Hong12,Ren Yang3,Hui Jian12

Affiliation:

1. School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China

2. Zhang Jiang Institute for Advanced Study Shanghai Jiao Tong University Shanghai China

3. Department of Physics City University of Hong Kong Kowloon Hong Kong China

Abstract

AbstractCuxO with flower‐like hierarchical structures has attracted significant research interest due to its intriguing morphologies and unique properties. The conventional methods for synthesizing such complex structures are costly and require rigorous experimental conditions. Recently, the X‐ray irradiation has emerged as a promising method for the rapid fabrication of precisely controlled CuxO shapes in large areas under environmentally friendly conditions. Nevertheless, the morphological regulation of the X‐ray‐induced synthesis of the CuxO is a multi‐parameter optimization task. Therefore, it is essential to quantitatively reveal the interplay between these parameters and the resulting morphology. In this work, we employed a high‐throughput experimental data‐driven approach to investigate the kinetics of X‐ray‐induced reactions and the impact of key factors, including sputtering power, film thickness, and annealing of precursor Cu thin films on the morphologies of CuxO. For the first time, the flower‐like CuxO nanostructures were synthesized using X‐ray radiation at ambient condition. This research proposes an eco‐friendly and cost‐effective strategy for producing CuxO with customizable morphologies. Furthermore, it enhances comprehension of the underlying mechanisms of X‐ray‐induced morphological modification, which is essential for optimizing the synthesis process and expanding the potential applications of flower‐like structures.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3