Developing dual‐state ultra‐efficient emissive carbon dots as internal and external artificial antenna of chloroplasts to enhance plant‐photosynthesis

Author:

Zhao Shijie1,Wang Hongyang2,He Jiuxing2,Dong Linlin1,Xie Tianyou1,Luo Yang1,Li Jie1,Lartey Patrick Osei1,Guo Kunpeng1ORCID,Liu Jialei2

Affiliation:

1. Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology Taiyuan Shanxi P. R. China

2. Institute of Environment and Sustainable Development in Agriculture Chinese Academy of Agricultural Science Beijing P. R. China

Abstract

AbstractIntroducing fluorescent nanomaterials as artificial antennas of chloroplasts offers a promising approach to enhancing light harvesting in photosynthesis. However, this technology is limited by the dependence of the fluorescence efficiency of nanomaterials on dispersed states that cannot enable nanomaterials inside and outside leaves to play an antenna role. Here, we developed solution and solid dual‐state ultra‐efficient blue emissive carbon dots (DuB2‐CDs) by regulating the content of graphitic‐N, surface hydroxyl groups. and C–Si bonds based on a four‐component microwave synthesis. The as‐prepared DuB2‐CDs showed intense blue emission in aqueous solution and solid state, with absolute photoluminescence quantum yields of 84.04% and 95.69%, respectively. These features guaranteed that the internal (DuB2‐CDs infiltrating the mesophyll system) and external (DuB2‐CDs remaining on the surface of leaves) artificial antennas can simultaneously enhance the solar energy utilization efficiency of chloroplasts. Compared with the control groups without antenna use and internal antenna use only, the foliar application of DuB2‐CDs substantially enhanced the electron‐transport rate, net photosynthesis rate, psbA gene expression, NADPH production, and other plant physiological parameters of living plant during photosynthesis. This work provided a promising strategy for realizing dual‐state ultra‐efficient emissive CDs while maximizing living plant‐photosynthesis augmentation.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Shanxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3