Functionally Distinctive Ptch Receptors Establish Multimodal Hedgehog Signaling in the Tooth Epithelial Stem Cell Niche

Author:

Binder Martin1,Chmielarz Piotr12,Mckinnon Peter J.3,Biggs Leah C.1,Thesleff Irma1,Balic Anamaria1ORCID

Affiliation:

1. Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland

2. Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland

3. Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA

Abstract

Abstract Continuous growth of the mouse incisor teeth is due to the life-long maintenance of epithelial stem cells (SCs) in their niche called cervical loop (CL). Several signaling factors regulate SC maintenance and/or their differentiation to achieve organ homeostasis. Previous studies indicated that Hedgehog signaling is crucial for both the maintenance of the SCs in the niche, as well as for their differentiation. How Hedgehog signaling regulates these two opposing cellular behaviors within the confinement of the CL remains elusive. In this study, we used in vitro organ and cell cultures to pharmacologically attenuate Hedgehog signaling. We analyzed expression of various genes expressed in the SC niche to determine the effect of altered Hedgehog signaling on the cellular hierarchy within the niche. These genes include markers of SCs (Sox2 and Lgr5) and transit-amplifying cells (P-cadherin, Sonic Hedgehog, and Yap). Our results show that Hedgehog signaling is a critical survival factor for SCs in the niche, and that the architecture and the diversity of the SC niche are regulated by multiple Hedgehog ligands. We demonstrated the presence of an additional Hedgehog ligand, nerve-derived Desert Hedgehog, secreted in the proximity of the CL. In addition, we provide evidence that Hedgehog receptors Ptch1 and Ptch2 elicit independent responses, which enable multimodal Hedgehog signaling to simultaneously regulate SC maintenance and differentiation. Our study indicates that the cellular hierarchy in the continuously growing incisor is a result of complex interplay of two Hedgehog ligands with functionally distinct Ptch receptors. Stem Cells  2019;37:1238–1248

Funder

Sigrid Juséliuksen Säätiö

Suomen Akatemia

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3