Climate change impacts on native cutthroat trout habitat in Colorado streams

Author:

Ma Chenchen1ORCID,Morrison Ryan R.1ORCID,White Daniel C.1ORCID,Roberts James2ORCID,Kanno Yoichiro34ORCID

Affiliation:

1. Civil and Environmental Engineering Colorado State University Fort Collins Colorado USA

2. U.S. Geological Survey Great Lakes Science Center – Lake Erie Biological Station Huron Ohio USA

3. Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado USA

4. Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA

Abstract

AbstractHeadwater streams support vital aquatic habitat yet are vulnerable to changing climate due to their high elevation and small size. Coldwater fish are especially sensitive to the altered streamflow and water temperature regimes during summer low flow periods. Though previous studies have provided insights on how changes in climate and alterations in stream discharge may affect habitat availability for various native cutthroat trout species, suitable physical habitats have not been evaluated under future climate projections for the threatened Greenback Cutthroat Trout (GBCT) native to headwater regions of Colorado, USA. Thus, this study used field data collected from selected headwater streams across the current distribution of GBCT to construct one‐dimensional hydraulic models to evaluate streamflow and physical habitat under four future climate projections. Results illustrate reductions in both predicted streamflow and physical habitat for all future climate projections across study sites. The projected mean summer streamflow shows greater decline (−52% on average) compared to the projected decline in mean August flow (−21% on average). Moreover, sites located at a relative higher elevation with larger substrate and steeper slope were projected to experience more reductions in physical habitat due to streamflow reductions. Specifically, streams with step‐pool morphologies may experience grater changes in available habitat compared to pool‐riffle streams. Future climate change studies related to coldwater fish that examine spatial variation in flow alteration could provide novel data to complement the existing literature on the thermal characteristics. Tailoring reintroduction and management efforts for GBCT to the individual headwater stream with adequate on‐site monitoring could provide a more holistic conservation approach.

Funder

U.S. Geological Survey

Publisher

Wiley

Subject

General Environmental Science,Water Science and Technology,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized Logit Dynamics Based on Rational Logit Functions;Dynamic Games and Applications;2024-02-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3