Fabrication of alginate/sericin/cellulose nanocrystals interpenetrating network composite hydrogels with enhanced physicochemical properties and biological activity

Author:

Wu Ting123,Liu Haiying4,Wang Hongcai123,Bu Yanan123,Liu Jiayi23,Chen Xiuqiong123,Yan Huiqiong123ORCID,Lin Qiang123

Affiliation:

1. Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou Hainan People's Republic of China

2. Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering Hainan Normal University Haikou Hainan People's Republic of China

3. Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering Hainan Normal University Haikou Hainan People's Republic of China

4. Hainan Hongta Cigarette Co., Ltd Haikou Hainan People's Republic of China

Abstract

AbstractSodium alginate (SA) possesses good biocompatibility and can form hydrogel materials under certain conditions, which has been widely used in tissue engineering. However, the absence of cellular recognition sites and low mechanical strength for single‐component alginate (ALG) hydrogels limit their practical applications. Therefore, enhancing the shortcomings of ALG hydrogels and augmenting their characteristics hold immense importance for their medical uses. In this study, comprehensively considering the excellent properties of cellulose nanocrystals (CNCs) and sericin (SS), the alginate/sericin/cellulose nanocrystalline (ALG/SS/CNCS) composite hydrogels were constructed by interpenetrating network (IPN) technique using hydroxyapatite/D‐glucono‐δ‐lactone (HAP/GDL) as the endogenous ionic cross‐linking agent of SA, 1‐ethyl‐(3‐dimethylaminopropyl) carbodiimide hydrochloride/N‐hydroxysuccinimide (EDC/NHS) as the chemical covalent cross‐linking agent of SS and CNCS as the reinforcing agent. The effects of SS and CNCs additions on the comprehensive properties of ALG/SS/CNCs composite hydrogels, such as their morphologies, structure, mechanical properties, swelling, degradability, and cytocompatibility were investigated. The findings indicated that the ALG/SS/CNCS IPN composite hydrogels which were created through the physical blending of SA and SS, displayed a consistent three‐dimensional form and a porous configuration. The weak mechanical strength of pure ALG hydrogels can be effectively improved and the swelling stability and mechanical properties of the composite hydrogels can be enhanced through the construction of IPN network and the incorporation of CNCs, thanks to the presence of intermolecular hydrogen bonding. The biodegradability of ALG/SS/CNCS composite hydrogels increased as the SS content increased, indicating that SS facilitated their biomineralization due to its inherent susceptibility to degradation. The results of the cell compatibility test conducted in a laboratory setting showed that SS and CNCS had the ability to enhance the attachment, proliferation, and differentiation of MC3T3‐E1 cells on the ALG/SS/CNCS composite hydrogels. Hence, incorporating SS and CNCS into the alginate matrix to create IPN composite hydrogels could significantly enhance the physicochemical and biological characteristics of ALG hydrogels, thus rendering them appropriate for tissue engineering purposes.

Funder

Key Research and Development Project of Hainan Province

National Natural Science Foundation of China

Natural Science Foundation of Hainan Province

China Scholarship Council

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3