Biomarker‐induced gold aggregates enable activatable near‐infrared‐II photoacoustic image‐guided radiosensitization

Author:

Fu Qinrui1ORCID,Wei Chuang1,Yang Xiao1,Wang Mengzhen1,Song Jibin2ORCID

Affiliation:

1. Institute for Translational Medicine The Affiliated Hospital of Qingdao University College of Medicine Qingdao University Qingdao China

2. State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing China

Abstract

AbstractCurrent radiotherapy (RT) lacks the ability to accurately discriminate between tumor and healthy tissues, resulting in significant radiation‐induced damage for patients. Therefore, there is an urgent need for precise RT techniques that can optimize tumor control while minimizing adverse effects on surrounding healthy tissues. In this study, we developed a nanodrug (AuNR@Peptide) composed of furin‐responsive RVRR peptide‐conjugated AuNRs, which integrates an activatable probe and a radiosensitizer into a single system for accurate tumor localization, enabling image‐guided precision RT. Upon reaching the tumor site after intravenous administration, proteolytic cleavage of RVRR substrates on AuNR@Peptide by biomarker triggers aggregation of gold nanorods (AuNRs) into larger aggregates, leading to activation of near‐infrared (NIR)‐II photoacoustic (PA) signals to precisely localize the tumor and enhance tumor retention by preventing migration and backflow of AuNRs. This significantly amplifies radiosensitivity efficiency. The peak time point at which the NIR‐II PA signal was observed at the tumor site after injection serves as a reference for initiating RT, demonstrating substantial improvement in tumor RT through investigations related to radiosensitization mechanisms. The integration of imaging and therapy in this study offers a promising image‐guided therapeutic modality for tumors.

Funder

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3