Impact of increasing urbanization on heatwaves in Indian cities

Author:

Boyaj Alugula1,Karrevula N. R.1,Sinha Palash2ORCID,Patel Pratiman3,Mohanty U. C.14ORCID,Niyogi Dev5

Affiliation:

1. School of Earth, Ocean, and Climate Sciences Indian Institute of Technology Bhubaneswar Bhubaneswar India

2. Centre for Development of Advanced Computing Pune India

3. Department of Geography National University of Singapore Singapore Singapore

4. Centre for Climate Smart Agriculture (CCSA) Siksha ‘O’ Anusandhan University Bhubaneswar India

5. Department of Earth and Planetary Sciences, Jackson School of Geosciences, and Maseeh Department of Civil, Architectural, and Environmental Engineering University of Texas at Austin Austin Texas USA

Abstract

AbstractUrbanization alters local climates and exacerbates urban heat islands. Understanding and addressing the impacts of urbanization on regional high impact weather systems is critical. This study examines the feedback loop between urbanization and heatwaves (HWs) in inland and coastal Indian cities of Hyderabad and Bhubaneswar which have been profoundly affected by urbanization and temperature extremes. Observational analysis reveals that during the pre‐monsoon season, daytime and nighttime air temperature anomalies, and the frequency of 90th percentile days, have increased by ~0.35°C and ~3 days for Hyderabad, and by ~0.2°C, and ~6 days for Bhubaneswar in the last two decades (2001–2020) relative to the previous decades (1981–2000). Analysis of  land‐use land‐cover (LULC) datasets shows a dramatic urban expansion by ~13 and ~11 times in Hyderabad and Bhubaneswar, respectively, between 1993 and 2019. Numerical experiments with the Weather Research and Forecasting model were undertaken considering hectometer spatial resolution (~500 m) and a lower boundary conditions representing the 1993 and 2019 LULC. The impact of urbanization on temperature changes and HWs in particular were analyzed. The HW simulations indicate that urbanization significantly enhances air and surface temperatures by ~4–6°C, particularly during nighttime rather than daytime. Urbanization effects are discerned in surface temperatures at night by 1–2°C relative to  air temperatures. Unlike nighttime, urbanization showed a negative or little influence on air and surface temperatures during the daytime. In contrast to surface and air temperatures, increased urbanization runs indicated enhanced regional soil temperature by ~5°C more during the daytime than at nighttime. The rise in nighttime air and surface temperatures is due to an increase in surface sensible heat fluxes by ~40–50 W/m2 in urban areas. The influence of urbanization on nighttime temperatures emphasizes the necessity for cool housing and engineering recommendations in urbanized regions of India.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3