Dynamic spatiotemporal modeling of a habitat‐defining plant species to support wildlife management at regional scales

Author:

Tredennick Andrew T.1ORCID,Monroe Adrian P.2ORCID,Prebyl Thomas1,Lombardi John1,Aldridge Cameron L.23ORCID

Affiliation:

1. Western EcoSystems Technology, Inc. Laramie Wyoming USA

2. U.S. Geological Survey, Fort Collins Science Center Fort Collins Colorado USA

3. Natural Resource Ecology Laboratory and Department of Ecosystem Science and Sustainability Colorado State University Fort Collins Colorado USA

Abstract

AbstractSagebrush (Artemisia spp.) ecosystems provide critical habitat for the Greater sage‐grouse (Centrocercus urophasianus), a species of conservation concern. Thus, future loss of sagebrush habitat because of land use change and global climate change is of concern. Here, we use a dynamic additive spatiotemporal model to estimate the effects of climate on sagebrush cover dynamics at 32 sage‐grouse management (core) areas in Wyoming. We use the fitted models to quantify the sensitivity of each management area to precipitation and temperature, and to make probabilistic projections of sagebrush cover from present to 2100 under three climate change scenarios. Global circulation models predict an increase in temperature and no change in precipitation for Wyoming. Sensitivity to climate varied among management areas, but the most common response (70% of management areas) was a positive effect of temperature on sagebrush performance. The combination of positive sensitivity to temperature and the predicted increase in temperature under all climate change scenarios resulted in projections of increased sagebrush cover for most management areas. We characterized management areas as “optimal” or “suboptimal” based on the percentage of grid cells in each management area with sagebrush cover exceeding a nesting habitat target value. Only 18% of management areas are projected to switch from being currently optimal to suboptimal in the future. Thirty‐five percent of management areas are projected to switch from being suboptimal to optimal. The most common outcome (47%) was for currently suboptimal management areas to remain suboptimal, even though average cover tended to increase in those areas. The direct effects of climate change appear to favor sagebrush performance in the future for most sage‐grouse core areas in Wyoming. Our approach is broadly applicable to quantitative climate change assessments where remotely sensed estimates of habitat‐defining vegetation are available.

Funder

U.S. Bureau of Land Management

U.S. Geological Survey

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3