Analysis of parabolic trough solar collector thermal efficiency with application of a graphene oxide nanosheet‐based nanofluid

Author:

Jamali Hamzeh1ORCID

Affiliation:

1. Mechanical Engineering Department Shiraz University of Technology Shiraz Iran

Abstract

AbstractNowadays, clean energy production and reconciliation with nature is one of the best solutions known to rectify the global warming issue. Solar energy, as a clean and green one, has recently been drawing scientists' attention to itself more than ever. Applying parabolic trough solar collectors (PTSCs) is one of the state‐of‐the‐art ways to extract energy from the sun. As one of the most interesting research topics, the thermal efficiency enhancement of PTSCs is studied. The current study demonstrates how the thermal efficiency of PTSCs is enhanced through the application of graphene oxide (GO) nanosheets, as an inexpensive nanomaterial with superb thermal conductivity and unique structure, in thermal oil, namely, Behran oil, as heat transfer fluid, within the effective volume fraction range of  0.05. The above‐mentioned analysis is based on the theoretical calculations performed through a mathematical model based on the Taylor series approximation. All the calculations are performed with respect to a PTSC unit of a solar–thermal power plant situated in Shiraz, Iran, as the research case study. In addition, the Nan et al. model is used to analytically predict how the increase in the volume fraction of GO nanosheets raises the thermal conductivity and consequently increases the convection heat transfer coefficient of the nanofluid, leading to the thermal efficiency enhancement of PTSCs. The results reveal a maximum thermal efficiency of 71.10% for the volume fraction of  0.05. In comparison to the thermal efficiency of the real‐world case‐study mentioned above with pure thermal oil, that is, 67.71%, the thermal efficiency enhancement by about 5.5%, is achieved. Moreover, it is discussed how the thermal efficiency achieved from GO nanosheets surpasses the ones obtained from the application of particle shape nanomaterials, or carbon nanotubes in the same conditions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3