A novel hybrid efficiency prediction model for pumping well system based on MDS–SSA–GNN

Author:

Ma Biao1ORCID,Dong Shimin1ORCID

Affiliation:

1. School of Mechanical Engineering Yanshan University Qinhuangdao China

Abstract

AbstractThe prediction of the efficiency of oil well pumping systems plays an important role in optimizing the energy efficiency parameters of these systems. Currently, the prediction of oil well pumping system efficiency relies primarily on mechanistic models, but these models are often overly complex in predicting efficiency. Some researchers have attempted to use deep learning to predict system efficiency, but due to insufficient consideration of influencing factors and the causal relationships between these factors and system efficiency, they often include irrelevant variables as influencing factors, leading to less accurate prediction models. In this paper, a hybrid model (MDS–SSA–GNN) is proposed for the prediction of pumping well system efficiency. The model consists of six parts: Pearson's product moment correlation coefficient (PPMCC), multidimensional scaling (MDS) transform, maximum–minimum normalization, sparrow optimization algorithm (SSA), graph neural network (GNN), and maximum–minimum inverse normalization. First, the size of the correlation coefficient between each influencing factor and the system efficiency is quantitatively calculated by using PPMCC. Second, the main influencing factors are downscaled by using MDS and normalized based on the principle of maximum–minimum normalization. Third, the GNN algorithm is used for the prediction of the pumping unit system efficiency, and the SSA algorithm is used for the optimization of the initial values of the network parameters. Finally, the prediction results are obtained by the maximum–minimum antinormalization. To validate the model's accuracy, this study randomly selected 100 actual oil wells for comparative analysis and analyzed the impact of structural parameters of the hybrid algorithm on the prediction accuracy of system efficiency. The analysis results demonstrate that the proposed model can effectively predict system efficiency and has a certain role in improving the accuracy of oil well pumping system efficiency predictions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference33 articles.

1. Predicting the Behavior of Sucker-Rod Pumping Systems

2. An improved model for sucker rod pumping;Doty DR;SPE J,1981

3. Sucker rod string dynamics in deviated wells

4. Predicting multi-tapered sucker-rod pumping systems with the analytical solution

5. A new simulation model for a beam‐pumping system applied in energy saving and resource‐consumption reduction;Xing MM;SPE Prod Oper,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3