Design and analysis of a freeform surface lens coupler applied in hollow‐core photonic crystal fiber resonant optic gyros

Author:

Fan Wen1,Bi Ran1,Shen Heliang1,She Xuan1,Chen Kan1,Chen Xingfan1,Shu Xiaowu1

Affiliation:

1. College of Optical Science and Engineering Zhejiang University Hangzhou China

Abstract

AbstractIn this study, a novel freeform surface lens coupler is designed to realize the coupling functions in the hollow‐core photonic crystal fiber (HCPCF) resonator optical gyroscope. One surface of the lens is an ellipsoid. Coupling of the two HCPCF loop's ports can be directly accomplished via reflection on the ellipsoid surface. The other surface of the lens is the Biconic Zernike surface. Transmitting through the above two surfaces, the coupling between the intracavity and extracavity is completed. In this paper, simulations were performed based on two types of HCPCFs, a hollow‐core photonic bandgap fiber of HC19‐1550 and a state‐of‐the‐art nested antiresonant nodeless fiber. The volume of the lens coupler is calculated to be approximately 4 × 2 × 4 mm3. The simulation results show that the intracavity coupling loss can be as low as 0.011 dB, and the coupling loss between the intracavity and extracavity can be as low as 0.4 dB. Compared with the traditional fusion scheme between hollow‐core fiber and polarization‐maintaining fiber, the freeform surface lens coupler in this paper can achieve lower coupling loss and higher resonance fineness. Compared with other spatial coupling schemes, it has lower coupling loss and fewer coupling components.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3