Exposure to Persistent Organic Pollutants in Australian Waterbirds

Author:

Nzabanita Damien1ORCID,Shen Hao1,Grist Stephen1,Lewis Phoebe J.2,Hampton Jordan O.34ORCID,Firestone Simon M.3,Hufschmid Jasmin3,Nugegoda Dayanthi1

Affiliation:

1. School of Science Royal Melbourne Institute of Technology Melbourne Victoria Australia

2. Applied Sciences Division Environment Protection Authority Victoria Macleod Victoria Australia

3. Faculty of Science, Melbourne Veterinary School University of Melbourne Werribee Victoria Australia

4. Harry Butler Institute Murdoch University Murdoch Western Australia Australia

Abstract

AbstractThere is growing worldwide recognition of the threat posed by persistent organic pollutants (POPs) to wildlife populations. We aimed to measure exposure levels to POPs in a Southern Hemisphere aquatic waterbird species, the nomadic gray teal (Anas gracilis), which is found across Australia. We collected wings from 39 ducks harvested by recreational hunters at two sites (one coastal, one inland) in Victoria, southeastern Australia, in 2021. We examined three groups of POPs: nine congeners of polychlorinated biphenyls (PCBs), 13 organochlorine pesticides (OCPs), and 12 polycyclic aromatic hydrocarbons (PAHs). The PCBs, OCPs, and PAHs were detected at quantifiable levels in 13%, 72%, and 100% of birds, respectively. Of the congeners we tested for in PCBs, OCPs, and PAHs, 33%, 38%, and 100% were detected at quantifiable levels, respectively. The highest levels of exposure to POPs that we found were to the PAH benzo[b]fluoranthene, occurring at a concentration range of 1.78 to 161.05 ng/g wet weight. There were some trends detected relating to differences between geographical sites, with higher levels of several PAHs at the coastal versus inland site. There were several strong, positive associations among PAHs found. We discuss potential sources for the POPs detected, including industrial and agricultural sources, and the likely role of large‐scale forest fires in PAH levels. Our results confirm that while Australian waterbirds are exposed to a variety of POPs, exposure levels are currently relatively low. Additional future investigations are required to further characterize POPs within Australian waterbird species. Environ Toxicol Chem 2024;00:1–12. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Funder

RMIT University

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3