Distribution, ecology, and threats assessment of 11 endemic frankincense tree taxa (Boswellia) in the Socotra Archipelago (Yemen)

Author:

Maděra Petr1ORCID,Vahalík Petr2,Hamdiah Salem13,Hušková Karolína1,Sekava Jiří1,Attorre Fabio4,La Montagna Dario4,De Sanctis Michele4,Netek Rostislav5,Bongers Frans6,Rivers Malin78ORCID,Šebesta Jan1,Amar Mohammad1,Keybani Salem1,Shanayeghen Mohammad1,Van Damme Kay1

Affiliation:

1. Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology Mendel University in Brno Brno Czech Republic

2. Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology Mendel University in Brno Brno Czech Republic

3. Biotechnical Faculty University of Ljubljana Ljubljana Slovenia

4. Department of Environmental Biology Sapienza‐University of Rome Rome Italy

5. Department of Geoinformatics, Faculty of Science Palacký University Olomouc Olomouc Czech Republic

6. Department of Environmental Science, Forest Ecology and Management Group Wageningen University Wageningen The Netherlands

7. Botanic Gardens Conservation International Richmond UK

8. IUCN/SSC Global Tree Specialist Group Richmond UK

Abstract

Societal Impact StatementConserving frankincense trees (Boswellia) is crucial for both ecological and socio‐economic reasons. Surveying these trees in the field and using remote sensing unmanned aerial vehicles in the Socotra Archipelago, we found that Socotran frankincense trees are threatened by forest fragmentation, overgrazing, and increasingly frequent extreme climate events. A better understanding of the distribution and the threats of these important insular species will improve the conservation policy of the local authorities and benefit local communities in the Socotra Archipelago. At the same time, this work serves as a good practice example to guide conservation efforts for other culturally important threatened tree species around the world, therefore helping to sustain local livelihoods, fostering ecological resilience, and supporting socio‐economic stability.Summary Globally, frankincense trees (Burseraceae: Boswellia) are increasingly under threat because of habitat deterioration, climate impacts, and the olibanum trade. Despite harboring nearly half of the species in the genus, up‐to‐date insights are lacking for the insular endemic frankincense trees of the Socotra Archipelago UNESCO (United Nations Educational, Scientific and Cultural Organization) World Heritage Site (Yemen). We combined georeferencing of individual trees in the field with remote sensing applying unmanned aerial vehicles (UAVs) to evaluate Boswellia distribution and (sub)population sizes in the entire Socotra Archipelago. We counted 17,253 trees across all 11 taxa and we surveyed almost 55% directly in the field, collecting individual information on threats and health indicators. We estimate that the current total population sizes of the relatively common Socotran Boswellia taxa (Boswellia elongata, Boswellia popoviana, and Boswellia ameero) consist of a few thousand mature individuals with fragmented distribution of which a large proportion occurs in highly disjunct relictual stands, while the more range‐restricted species survive only through a few hundred (Boswellia nana and Boswellia samhaensis) to fewer than a hundred trees (Boswellia scopulorum). Our field data show that the Socotran frankincense trees are threatened by fragmentation and overgrazing resulting in a lack of natural regeneration, in combination with effects of extreme climate events (e.g., higher frequency and intensity of cyclones and prolonged drought) and potential future infrastructure developments; the species are less impacted by resin collection. We provide recommendations to strategize urgent protection of the declining Socotran frankincense trees, and we update their conservation status, resulting in an endangered status for seven and a critically endangered status for four taxa.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3