Using local knowledge to reconstruct climate‐mediated changes in disease dynamics and yield—A case study on Arabica coffee in its native range

Author:

Ayalew Biruk1ORCID,Hylander Kristoffer1ORCID,Börjeson Lowe2ORCID,Adugna Girma3,Beche Dinkissa4,Zignol Francesco15,Tack Ayco J. M.1ORCID

Affiliation:

1. Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm Sweden

2. Department of Human Geography Stockholm University Stockholm Sweden

3. Department of Horticulture & Plant Sciences Jimma University College of Agriculture and Veterinary Medicine Jimma Ethiopia

4. Department of Plant Biology and Biodiversity Management Addis Ababa University Addis Ababa Ethiopia

5. Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden

Abstract

Societal Impact StatementAdapting agriculture to climate change requires an understanding of the long‐term relationship between climate, disease dynamics, and yield. While some countries have monitored major crop diseases for decades or centuries, comparable data is scarce or non‐existent for many countries that are most vulnerable to climate change. For this, a novel approach was developed to reconstruct climate‐mediated changes in disease dynamics and yield. Here, a case study on Arabica coffee in its area of origin demonstrates how to combine local knowledge, climate data, and spatial field surveys to reconstruct disease and yield time series and to postulate and test hypotheses for climate–disease–yield relationships.Summary While some countries have monitored crop diseases for several decades or centuries, other countries have very limited historical time series. In such areas, we lack data on long‐term patterns and drivers of disease dynamics, which is important for developing climate‐resilient disease management strategies. We adopted a novel approach, combining local knowledge, climate data, and spatial field surveys to understand long‐term climate‐mediated changes in disease dynamics in coffee agroforestry systems. For this, we worked with 58 smallholder farmers in southwestern Ethiopia, the area of origin of Arabica coffee. The majority of farmers perceived an increase in coffee leaf rust and a decrease in coffee berry disease, whereas perceptions of changes in coffee wilt disease and Armillaria root rot were highly variable among farmers. Climate data supported farmers' understanding of the climatic drivers (increased temperature, less rainy days) of these changes. Temporal disease‐climate relationships were matched by spatial disease‐climate relationships, as expected with space‐for‐time substitution. Understanding long‐term disease dynamics and yield is crucial to adapt disease management to climate change. Our study demonstrates how to combine local knowledge, climate data and spatial field surveys to reconstruct disease time series and postulate hypotheses for disease‐climate relationships in areas where few long‐term time series exist.

Funder

Vetenskapsrådet

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3