Genomic dissection of productivity, lodging, and morpho‐physiological traits in Eragrostis tef under contrasting water availabilities

Author:

Alemu Muluken Demelie12ORCID,Ben‐Zeev Shiran1ORCID,Hellwig Timo13ORCID,Barak Vered1,Shoshani Gil4,Chen Assaf4ORCID,Razzon Stephane1,Herrmann Ittai1ORCID,Vorobyova Alexandra4ORCID,Hübner Sariel4ORCID,Saranga Yehoshua1ORCID

Affiliation:

1. The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Jerusalem Israel

2. Ethiopian Institute of Agricultural Research Addis Ababa Ethiopia

3. Volcani Center, Agricultural Research Organization Rishon LeZion Israel

4. Galilee Research Institute (MIGAL) Tel‐Hai College Kiryat Shmona Israel

Abstract

Societal Impact StatementUnderutilized species (also known as orphan crops) present opportunities to increase crop diversity and food security. Such crops lack modern genetic tools and knowledge to facilitate efficient modern breeding approaches. A wide collection of tef (Eragrostis tef (Zucc.) Trotter) genotypes was used to identify genomic regions associated with productivity, lodging, and morpho‐physiological traits under contrasting water availabilities. The obtained results are expected to enhance modern breeding and improve tef productivity under traditional and modern cropping systems, thus improving farmers' livelihood and food security.Summary Tef (E. tef (Zucc.) Trotter) is an allotetraploid (2n = 4x = 40) C4 cereal crop, endemic to Ethiopia and mainly cultivated in the Horn of Africa. Tef is characterized by high grain and feed nutritional qualities and resilience to abiotic and biotic stresses; thus, it holds great potential to sustain food and nutrition security in Africa and other parts of the world. The objective of this study was to identify genomic regions associated with responses to contrasting water regimes, as a basis for future improvement. A tef diversity panel was genotyped with 28,837 single nucleotide polymorphisms (SNPs) and phenotyped for productivity, lodging, and morpho‐physiological traits along two seasons (2020 and 2021) under well‐watered and water‐limited treatments. A genome‐wide association study was performed to identify genomic regions associated with key traits for tef breeding. A total of 107 SNPs were associated with one or more of the studied traits, resulting in 138 marker–trait associations (MTAs) detected under both water treatments. Of these, 22 SNPs were associated with more than one trait, showing either multiple trait (pleiotropic) or multiple environment associations or both. A particularly strong association was found between grain yield, lodging, and time to heading. These findings open new avenues to further research on the genetic basis and physiological mechanisms underlying major traits in tef, as well as to marker‐assisted breeding of drought‐resilient tef cultivars.

Funder

Robert H. Smith International Center for Jefferson Studies, Thomas Jefferson Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3