Affiliation:
1. College of Environmental and Safety Engineering Shenyang University of Chemical Technology Shenyang China
2. College of Science Shenyang University of Chemical Technology Shenyang China
Abstract
Manganese oxide catalysts are considered to be active in the catalytic purification of volatile organic compounds based on two theories. According to one view, defects are mainly constructed to increase the amount of adsorbed oxygen and, consequently, the catalytic activity, whereas the opposite view suggests that the mobility of lattice oxygen is the main reason for determining the catalytic performance. In order to investigate which form of oxygen is the key factor controlling the catalytic performance of manganese oxides, a series of manganese oxide octahedral molecular sieves (OMS‐2) with different adsorption and lattice oxygen properties were synthesized in this study, and the catalytic oxidation performance of the catalysts for toluene was examined. The impact of various oxygen species on the catalytic activity of OMS‐2 was investigated in depth by characterization by Raman, X‐ray diffraction, scanning electron microscope, Brunauer–Emmett–Teller, O2 temperature‐programmed desorption, H2 temperature‐programmed reduction, X‐ray photoelectron spectroscopy, and so forth. It was discovered that OMS‐2‐150 exhibits excellent catalytic activity for toluene purification due to its higher Mn4+ and lattice oxygen as well as low‐temperature reducibility. In addition, in situ diffuse reflectance, infrared Fourier transform spectroscopy also verified that lattice oxygen dominates the reaction and improves the catalytic performance. As such, in contrast to previous investigations, this study found that lattice oxygen migration was more important than adsorbed oxygen content for manganese oxides in the field of volatile organic compounds purification. This brings a new perspective to the preparation of manganese‐based catalysts with promising catalytic behaviors.
Funder
National Natural Science Foundation of China
Department of Education of Liaoning Province
Subject
Inorganic Chemistry,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献