Thermal performance investigation of N‐shape double‐pipe heat exchanger using Al2O3, TiO2, and Fe3O4‐based nanofluids

Author:

Salim Asif1,Jihan Jahidul Islam1ORCID,Das Barun K.2,Ahmed Rasel1ORCID

Affiliation:

1. Department of Mechanical Engineering Hajee Mohammad Danesh Science and Technology University Dinajpur Bangladesh

2. Department of Mechanical Engineering Rajshahi University of Engineering and Technology Rajshahi Bangladesh

Abstract

AbstractResearchers and engineers are actively working on enhancing the efficiency of heat exchangers in engineering applications by developing novel designs, exploring new materials, and utilizing nanofluids. Three kinds of nanofluids with varying concentrations are investigated in this paper. The objective is to assess the performance of N‐shaped double‐pipe heat exchanger used in thermoelectric power plants. The performance has been evaluated using COMSOL Multiphysics software. The findings show that higher nanofluid concentrations resulted in elevated heat transfer coefficients and improved efficiency of N‐shape double pipe heat exchanger. The analysis revealed that a mere 1% rise in the volume fraction of nanofluids enhanced the efficiency of the heat exchanger on average 23% when compared to the base fluid (water). In comparison to the N‐shape double pipe (Inconel 625) heat exchangers, the N‐shape double pipe (copper) heat exchangers appear to be more efficient. The introduction of nanoparticles has a notable impact on the heat transfer coefficients. Specifically, within an N‐shaped double pipe (copper) heat exchanger, the inclusion of a 1% volume fraction results in a 2.09% enhancement in the heat transfer coefficient for Al2O3/water, a 1.3% improvement for Fe3O4/water, and a 1.15% increase for TiO2/water. It also exposed that adding 1% Al2O3/water led to a significant 0.623% increase in effectiveness, while TiO2/water showed a 0.259% rise, and Fe3O4/water exhibited a 0.375% improvement. Moreover, increasing the Reynolds number enhances the Nusselt number for Al2O3/water and Fe3O4/water nanofluids by 55.22%, and for TiO2/water by 54.60% at a 6% volume concentration, leading to additional increases in exchanger efficiency. Therefore, the augmentation in nanofluid concentration leads to a reduction in the temperature pinch points both at the intake and outflow. This observation suggests that nanofluids exhibit a superior ability compared to conventional fluids when it comes to effectively lowering temperatures.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3