Effect of the tip speed ratio on the wake characteristics of wind turbines using LBM‐LES

Author:

Cui Xinghang1,Mao Hantao2,Wang Zhengdao1,Yang Hui1,Qian Yuehong3,Wei Yikun1ORCID,Zhang Yan4

Affiliation:

1. Key Laboratory of Fluid Transmission Technology of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou Zhejiang China

2. Zhejiang Windey Co., Ltd. Hangzhou Zhejiang China

3. School of Mathematical Sciences Soochow University Suzhou Jiangsu China

4. Department of Aeronautics Imperial College London London UK

Abstract

AbstractIn this paper, the wake characteristics of Zell 2000 wind turbine under different tip velocity ratios are studied by using the lattice Boltzmann method and large eddy simulation. The adaptive mesh refinement method is performed to capture the fine flow structure and wake characteristics development. In this paper, we mainly focus on the effect of the tip speed ratio on the flow structure and unsteady characteristics of wind turbine wake. The three‐dimensional flow vorticity structures, the section vorticity diagram, the pressure fluctuation of wake and the lift coefficient of wind turbine wake are utilized to explore the effect of the tip speed ratio on the unsteady physics mechanism of wind turbine wake. With the increase of the tip speed ratio, the distance between two adjacent vortex rings along the axial direction gradually decreases, as the position of the broken vortex circles gradually approaches the center of the blade, separated vortexes are rapidly generated, and the coherent structure appears closer to the wind turbine. A relationship is established between the tip speed ratios and the positions of the broken vortex circles. It is further found that the dominant frequency amplitude gradually increases with the increase of tip speed ratio and the pressure amplitude spectra of vortex increases with the decrease of the distance between the wake and the center of the blade axis. The above series of studies can provide significant physical insight into deep understanding the influence of the tip speed ratio on the wake characteristics of wind turbines.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3