Finding conserved low‐diameter subgraphs in social and biological networks

Author:

Pan Hao1ORCID,Lu Yajun2ORCID,Balasundaram Balabhaskar1ORCID,Borrero Juan S.3ORCID

Affiliation:

1. School of Industrial Engineering and Management Oklahoma State University Stillwater Oklahoma USA

2. Department of Management and Marketing Jacksonville State University Jacksonville Alabama USA

3. Department of Industrial and Management Systems Engineering University of South Florida Tampa Florida USA

Abstract

AbstractThe analysis of social and biological networks often involves modeling clusters of interest as cliques or their graph‐theoretic generalizations. The ‐club model, which relaxes the requirement of pairwise adjacency in a clique to length‐bounded paths inside the cluster, has been used to model cohesive subgroups in social networks and functional modules or complexes in biological networks. However, if the graphs are time‐varying, or if they change under different conditions, we may be interested in clusters that preserve their property over time or under changes in conditions. To model such clusters that are conserved in a collection of graphs, we consider a cross‐graph ‐club model, a subset of nodes that forms a ‐club in every graph in the collection. In this article, we consider the canonical optimization problem of finding a cross‐graph ‐club of maximum cardinality in a graph collection. We develop integer programming approaches to solve this problem. Specifically, we introduce strengthened formulations, valid inequalities, and branch‐and‐cut algorithms based on delayed constraint generation. The results of our computational study indicate the significant benefits of using the approaches we introduce.

Funder

Air Force Office of Scientific Research

Publisher

Wiley

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3