Machine Learning‐Based Quantification of Patient Factors Impacting Remission in Patients With Ulcerative Colitis: Insights from Etrolizumab Phase III Clinical Trials

Author:

Harun Rashed12ORCID,Lu James1ORCID,Kassir Nastya1ORCID,Zhang Wenhui1

Affiliation:

1. Clinical Pharmacology Genentech, Inc. South San Francisco California USA

2. PTC Genomics, Bioinformatics & Biospecimens Genentech, Inc. South San Francisco California USA

Abstract

Etrolizumab, an investigational anti‐β7 integrin monoclonal antibody, has undergone evaluation for safety and efficacy in phase III clinical trials on patients with moderate to severe ulcerative colitis (UC). Etrolizumab was terminated because mixed efficacy results were shown in the induction and maintenance phase in patients with UC. In this post hoc analysis, we characterized the impact of explanatory variables on the probability of remission using XGBoost machine learning (ML) models alongside with the SHapley Additive exPlanations framework for explainability. We used patient‐level data encompassing demographics, physiology, disease history, clinical questionnaires, histology, serum biomarkers, and etrolizumab drug exposure to develop ML models aimed at predicting remission. Baseline covariates and early etrolizumab exposure at week 4 in the induction phase were utilized to develop an induction ML model, whereas covariates from the end of the induction phase and early etrolizumab exposure at week 4 in the maintenance phase were used to develop a maintenance ML model. Both the induction and maintenance ML models exhibited good predictive performance, achieving an area under the receiver operating characteristic curve (AUROC) of 0.74 ± 0.03 and 0.75 ± 0.06 (mean ± SD), respectively. Compared with placebo, the highest tertile of etrolizumab exposure contributed to 15.0% (95% confidence interval (CI): 9.7–19.9) and 17.0% (95% CI: 8.1–26.4) increases in remission probability in the induction and maintenance phases, respectively. Additionally, the key covariates that predicted remission were CRP, MAdCAM‐1, and stool frequency for the induction phase and white blood cells, fecal calprotectin and age for the maintenance phase. These findings hold significant implications for establishing stratification factors in the design of future clinical trials.

Publisher

Wiley

Subject

Pharmacology (medical),Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3