Affiliation:
1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education Beijing University of Technology Beijing China
2. Department of Civil and Environmental Engineering Western University London Ontario Canada
3. Department of Hydraulic Engineering Tsinghua University Beijing China
4. School of Civil Engineering North China University of Technology Beijing China
Abstract
AbstractThis paper investigates the seismic bridge‐pile‐soil system failure mechanisms due to liquefaction‐induced lateral spreading. Two large‐scale shaking table tests were performed on pile groups with and without bridges in sloped liquefiable soils overlain by soil crust. The systems were subjected to a weak earthquake signal (Tabas 0.05 g) and a strong earthquake signal (Tabas 0.3 g). Their responses were recorded in terms of excess pore pressure, acceleration, and displacement time histories. The piles seismic failure mode and mechanism are described based on the obtained results. In addition, the inertial and kinematic interaction effects on the piles’ deflection were evaluated. The results demonstrated that the bridge had no significant effect on the seismic response of the pile‐soil system under weak earthquakes. Meanwhile, the test model without a bridge experienced more significant soil lateral displacement, and the saturated sand exhibited dilatant behavior, and amplified the acceleration peak response during the strong earthquake. Moreover, the liquefaction‐induced lateral spreading moved the vulnerable position of the pile group bridge system from the pier bottom to the pile head, which changed the failure mode of the pile head. The results also revealed that, compared with weak earthquake excitation, the kinematic effect was significantly enhanced, and the inertia effect was weakened during strong earthquakes. Moreover, the pile curvature during both weak and strong earthquakes was inversely proportional to the bridge inertial load.
Funder
National Natural Science Foundation of China
Subject
Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献