Changing seasonality of daily and monthly precipitation extremes for the contiguous USA and possible connections with large‐scale climate patterns

Author:

Dhakal Nirajan1ORCID,Tharu Bhikhari2,Aljoda Ali1

Affiliation:

1. Environmental and Health Sciences Program Spelman College Atlanta Georgia USA

2. Department of Mathematics Spelman College Atlanta Georgia USA

Abstract

AbstractTemporal changes in the seasonality of extreme precipitation, and possible teleconnections between the seasonality of extreme precipitation and large‐scale climate patterns are not well understood. In this study, we investigated temporal changes in seasonality of annual daily maximum (ADM) and monthly maximum (MM) precipitation indices over the period 1951–2014 for 1,108 stations across the contiguous USA. We also examined seasonality of extreme precipitation during negative and positive phases of three major oscillations: the El Niño–Southern Oscillation, the Northern Atlantic Oscillation, and the Pacific Decadal Oscillation. Our results show that many climate regions within the contiguous USA display distinct seasonality for both ADM and MM. Comparison of seasonality between two historical records of equal length, that is, before and after 1981, shows great spatial variability across the contiguous USA. While a spatial coherence of change in the mean date of occurrence of extreme precipitation across a large area is not visible, a cluster of stations showing decrease in strength of seasonality for the recent period is concentrated in the eastern Gulf Coast and coastal sites of Northeast and Northwest regions. Extreme precipitation seasonality during negative and positive phases of three climate indices revealed that large‐scale climate variabilities have a strong influence on the mean date of occurrence of extreme precipitation but generally weak influence on the strength of seasonality in the contiguous USA. Results from our study might be helpful for sustainable water resource management, flood risk mitigation, and prediction of future precipitation seasonality.

Funder

National Science Foundation

Publisher

Wiley

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3