Effect of alkali metal salt addition on disintegration of titania particles precipitated from tetraethyl orthotitanate in ethanol

Author:

Zimmermann Sebastian1ORCID,Koenig Aaron Justin1ORCID,Reich Oliver2,Bressel Lena1

Affiliation:

1. Department of Physical Chemistry—innoFSPEC Institute of Chemistry University of Potsdam Potsdam Germany

2. Department of Transfer of Knowledge and Technology Faculty of Science University of Potsdam Potsdam Germany

Abstract

AbstractInline (or in situ) photon density wave spectroscopy was used to monitor the disintegration of secondary titania particles into their primary particles. Photon density wave spectroscopy can be applied to determine the reduced scattering coefficient of a dispersion without dilution or calibration, and thus enables process analysis in materials that are usually unsuitable for established particle characterization techniques. In this work, amorphous titania particles were precipitated from tetraethyl orthotitanate in ethanol by addition of water in presence of different alkali metal salts (NaCl, KCl, CsCl, K2SO4) with concentrations between 0 and 1.6 mM. The present results suggest that the synthesized titania secondary particles disintegrate into their primary particles if the electrostatic repulsion between the primary particles is promoted. This can be achieved by an increased alkali chloride concentration in the synthesis or by addition of larger alkali metal ions. In contrast, the particles are only weakly charged upon addition of sulfate ions, and the disintegration stops. The conclusions drawn from photon density wave spectroscopy results are supported by gravimetric determination of the particle yield, dynamic light scattering measurements, zeta‐potential measurements, and electron micrographs. Additionally, the disintegration was driven to completion by addition of hydrochloric acid to create a transparent suspension of titania primary particles as small as 4.7 nm.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3