Degradation kinetics of epoxidized soybean oil composites filled with sisal fiber

Author:

Severo Amanda1,Barreto Vinícius2,Nicácio Pedro1,Souza Matheus1,Luna Carlos1,Fook Marcus1,Silva Ingridy1,Dantas Lorena1,Ries Andreas3,Wellen Renate12ORCID

Affiliation:

1. Academic Unit of Materials Engineering Federal University of Campina Grande Campina Grande Brazil

2. Materials Engineering Department Federal University of Paraíba João Pessoa Brazil

3. Multidisciplinary Center for Technological Investigations National University of Asunción, San Lorenzo University Campus San Lorenzo Paraguay

Abstract

AbstractEpoxidized soybean oil (ESO) composites were cured with methyl tetrahydrophthalic anhydride (MTHPA) and 2,4,6‐tris(dimethylaminomethyl)phenol (DEH 35) as a catalyst, sisal fibers were added at 10% and 30% of percent per weight. Composites curing was monitored using Fourier transform infrared spectroscopy, whereas the thermal stability and the degradation kinetics were investigated using thermogravimetry (TG). ESO/MTHPA/DEH35/S10 and ESO/MTHPA/DEH35/S30 composites displayed curing temperatures approximately 100°C lower related to ESO/MTHPA/DEH35, as well as higher degree of conversion. Sisal addition improved the thermal stability, shifting the weight loss shifting the weight loss onset to higher temperature (from 82 to 120°C). Thermal degradation energy was determined using Friedman, Kissinger‐Akahira‐Sunose and Ozawa‐Flynn‐Wall models. Sisal significantly increased , especially in the intermediate phase (α = 0.2 and 0.8). The degradation kinetics was investigated by TG, and the degradation mechanisms modeled using Kamal‐Sourour, Sestack‐Berggren, and 1st order (F1), showed excellent fit, with R2 > 0.99. Acquired results demonstrate that sisal fiber addition benefited the curing process and increased the thermal stability of ESO composites.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Apoio à Pesquisa do Estado da Paraíba

Universidade Federal da Paraíba

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3