Effect of interface on elastic and toughening behavior in poly lactic acid/thermoplastic starch blends: Micromechanical finite element analysis

Author:

Rivera‐Salinas Jorge E.1ORCID,Gregorio‐Jáuregui Karla M.2,Sánchez‐Valdés Saúl3,Gutiérrez‐Pérez Víctor H.2,Lara‐Sánchez Jesús3,Cruz‐Ramírez Alejandro2,Rodríguez‐Gonzáles Francisco J.3,Ramírez‐Vargas Eduardo3

Affiliation:

1. CONAHCYT—Departamento de Procesos de transformación Centro de Investigación en Química Aplicada—CIQA Saltillo Coahuila Mexico

2. Departamento de Ingeniería en Metalurgia y Materiales, Instituto Politécnico Nacional Escuela Superior de Ingeniería Química e Industrias Extractivas – ESIQIE, UPALM Mexico DF Mexico

3. Departamento de Procesos de transformación Centro de Investigación en Química Aplicada—CIQA Saltillo Coahuila Mexico

Abstract

AbstractIt is frequently emphasized that the action of interfacial adhesion is a critical parameter to improve the stiffness and toughness of polylactic acid/thermoplastic starch (PLA/TS) blends. In this work, the micromechanical behavior of PLA/TS blends with droplet morphology selected from literature is predicted and analyzed systematically by finite element analysis. A quantitative assessment of the effect of interface (perfect or imperfect) on the elastic behavior and craze initiation for toughening of PLA/TS blends is presented. For the elastic behavior, the PLA phase is the blend's load‐bearing component as the TS is more compliant than PLA, so an interface perfectly bonded reduces the blend's elastic modulus when compared to the modulus obtained if the interface is weakly bonded. Regarding the toughening behavior, as a compliant phase, the TS has the potential to nucleate stable crazes in the host PLA matrix independently of the degree of interfacial adhesion because the highly stressed region lies near the equator of the particle; nonetheless, the critical stress for craze initiation is very sensitive to the TS particle size. On the other hand, as the TS is less capable than PLA to develop large hydrostatic stresses, the TS has a low potential to dissipate energy by cavitation.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3