Numerical simulations of particle concentration and size effects in a slurry bubble column with a CFD‐PBM coupled model

Author:

Shen Xiankun1,Zhang Huahai12,Jia Zhiyong1,Guo Zhongshan13,Wang Yuelin1,Li Banghao1ORCID,Shen Yongbin3,Lan Xiaocheng14,Wang Tiefeng14ORCID

Affiliation:

1. Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering Tsinghua University Beijing China

2. State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing China

3. Ningmei Coal to Oil Branch Company CHN Energy Yinchuan Ningxia China

4. Ordos Laboratory Ordos Inner Mongolia China

Abstract

AbstractThe combined effects of particle concentration (0–20 vol%) and particle size on the hydrodynamics of a slurry bubble column were studied by computational fluid dynamics coupled with population balance model (CFD‐PBM) in a wide range of superficial gas velocity (0.02–0.20 m/s). This CFD‐PBM coupled model included multiple effects of particles, namely increased slurry viscosity, reduced drag force, promoted bubble coalescence, and attenuated liquid turbulence, among which turbulence attenuation was crucial. To quantify liquid turbulence attenuation, a mechanistic model was established by equating the energy dissipated by particle motion to the attenuated liquid turbulence energy calculated from turbulent energy spectrum. The turbulent energy dissipation rate was reduced by over 60% at a solid concentration of 20%. Using this model, the effects of particle concentration and particle size on overall gas holdup were well predicted. This model advanced our understanding of how particles affect the gas holdup in a slurry bubble column.

Funder

Key Research and Development Program of Ningxia

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3