Adsorption of uranium (VI) from aqueous solutions using boron nitride/polyindole composite adsorbent

Author:

Emre Deniz1ORCID,Zorer Özlem Selçuk2ORCID,Bilici Ali3ORCID,Budak Erhan4ORCID,Yilmaz Selehattin3ORCID,Kilic Necla Caliskan2ORCID,Sogut Eda Gokirmak5ORCID

Affiliation:

1. Vocational School of Health Services Çanakkale Onsekiz Mart University Çanakkale Turkey

2. Faculty of Science, Department of Chemistry Van Yuzuncu Yil University Van Turkey

3. Faculty of Sciences, Department of Chemistry Çanakkale Onsekiz Mart University Çanakkale Turkey

4. Faculty of Arts and Sciences, Department of Chemistry Bolu Abant Izzet Baysal University Bolu Turkey

5. Van Security Vocational School Van Yuzuncu Yil University Van Turkey

Abstract

AbstractTurbostratic boron nitride (tBN) surface is modified with polyindole (PIn) by a facile polymerization technique and the uranyl adsorption efficiency of this mesoporous hybrid is investigated. The successful surface modification is confirmed by FT‐IR, Raman, XRD, TEM, SEM, EDX, EDS mapping XPS, BET, and zeta potential techniques. The batch experiments are performed in various temperatures (T), contact times (t), pH, and initial solution concentrations (C0) to evaluate its adsorption performance. The optimum adsorption performance is achieved at pH = 5.0–5.5, T = 307 K, t = 10 min, C0 = 18 mg L−1. These experimental results are evaluated using Freundlich, Redlich–Peterson, and Langmuir isotherm models, which presents equivalent regression coefficients. Maximum adsorption capacity (qm) of the nanoadsorbent (tBN/PIn), determined by the Langmuir isotherm, is 315.29 mg g−1. The adsorption kinetics of uranyl ions on tBN/PIn are in harmony with the pseudo‐second order model. tBN/PIn nanoadsorbent provides high adsorption efficiency even at exceptionally low UO22+ concentration range (4–40 mg L−1) and low adsorbent mass (0.005 g). XPS analysis results show that 0.05% of uranium is adsorbed on tBN/PIn via mainly U‐O coordination. The results of present study demonstrate that tBN/PIn can a potential adsorbent for removing uranium from aqueous solutions.

Funder

Çanakkale Onsekiz Mart Üniversitesi

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3