Automatic classification of AD pathology in FTD phenotypes using natural speech

Author:

Cho Sunghye1ORCID,Olm Christopher A.2,Ash Sharon2,Shellikeri Sanjana2,Agmon Galit2,Cousins Katheryn A. Q.2,Irwin David J.2,Grossman Murray2,Liberman Mark1,Nevler Naomi2

Affiliation:

1. Linguistic Data Consortium Department of Linguistics University of Pennsylvania Philadelphia Pennsylvania USA

2. Penn Frontotemporal Degeneration Center University of Pennsylvania Philadelphia Pennsylvania USA

Abstract

AbstractINTRODUCTIONScreening for Alzheimer's disease neuropathologic change (ADNC) in individuals with atypical presentations is challenging but essential for clinical management. We trained automatic speech‐based classifiers to distinguish frontotemporal dementia (FTD) patients with ADNC from those with frontotemporal lobar degeneration (FTLD).METHODSWe trained automatic classifiers with 99 speech features from 1 minute speech samples of 179 participants (ADNC = 36, FTLD = 60, healthy controls [HC] = 89). Patients’ pathology was assigned based on autopsy or cerebrospinal fluid analytes. Structural network‐based magnetic resonance imaging analyses identified anatomical correlates of distinct speech features.RESULTSOur classifier showed 0.88 0.03 area under the curve (AUC) for ADNC versus FTLD and 0.93 0.04 AUC for patients versus HC. Noun frequency and pause rate correlated with gray matter volume loss in the limbic and salience networks, respectively.DISCUSSIONBrief naturalistic speech samples can be used for screening FTD patients for underlying ADNC in vivo. This work supports the future development of digital assessment tools for FTD.Highlights We trained machine learning classifiers for frontotemporal dementia patients using natural speech. We grouped participants by neuropathological diagnosis (autopsy) or cerebrospinal fluid biomarkers. Classifiers well distinguished underlying pathology (Alzheimer's disease vs. frontotemporal lobar degeneration) in patients. We identified important features through an explainable artificial intelligence approach. This work lays the groundwork for a speech‐based neuropathology screening tool.

Funder

National Institutes of Health

U.S. Department of Defense

Alzheimer's Association

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3