A case study analysis of the impact of a new free tropospheric turbulence scheme on the dispersion of an atmospheric tracer

Author:

Mirza Andrew K.1ORCID,Dacre Helen F.1ORCID,Lo Chun Hay Brian1ORCID

Affiliation:

1. Department of Meteorology, Brian Hoskins Building University of Reading Reading United Kingdom

Abstract

AbstractMost Lagrangian dispersion models represent free tropospheric turbulence as a homogeneous steady‐state process. However, intermittent turbulent mixing in the free troposphere may be a significant source of mixing. We test a new parametrization scheme that represents spatial‐ and temporal‐varying turbulence in the free troposphere in the Met Office's Numerical Atmospheric‐dispersion Modelling Environment. We use semi‐idealized emissions of radon‐222 (Rn) from rocks and soil in the United Kingdom to evaluate the impact of using a variable free tropospheric turbulence parameterization on the dispersion of Rn. We performed two experiments, the first using the existing steady‐state scheme and the second using the newly implemented spatio‐temporal‐varying scheme, for two case periods July 2018 and April 2021. We find that the turbulence in the varying scheme (represented by the vertical velocity variance) can range by two to three orders of magnitude (10 to 10 m s) when compared with the steady‐state scheme (10 m s). In particular, low‐altitude turbulence is enhanced when synoptic conditions are conducive to forming low‐level jets. This leads to a greater dispersion in the free troposphere, reducing the mean monthly Rn concentration above the boundary layer by 20–40% relative to the steady‐state scheme. We conclude that without a space–time‐varying free tropospheric turbulence scheme atmospheric dispersion may be significantly underestimated under synoptic conditions that are favourable for low‐level jet formation. This underestimation of dispersion may potentially result in inaccurate estimations of local emissions in top‐down greenhouse gas inventory studies.

Funder

Met Office

Natural Environment Research Council

Publisher

Wiley

Reference73 articles.

1. Arnold T. Kikaj D.&Wenger A.(2022)Private communication.

2. Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode

3. PROJECT PRAIRIE GRASS, A FIELD PROGRAM IN DIFFUSION. VOLUME 1

4. The VOL‐CALPUFF model for atmospheric ash dispersal: 1. Approach and physical formulation;Barsotti S.;Journal of Geophysical Research: Solid Earth,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3