Thermal electron attachment to halogenated silanes in the gas phase

Author:

Michalczuk Bartosz1,Papp Peter2,Mészáros Dušan2,Stachová Barbora2,Moravský Ladislav2,Matejčík Štefan2,Barszczewska Wiesława1

Affiliation:

1. Institute of Chemical Sciences, Faculty of Science University of Siedlce Siedlce Poland

2. Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava Bratislava Slovakia

Abstract

RationaleSilane derivatives play a crucial role in industrial plasma processes for the fabrication of various electronic devices such as lighting devices, solar cells, and displays. Accurate quantitative data are essential for modeling technological plasmas. This study reports the rate coefficients (k) and activation energies (Ea) for thermal electron attachment to Si2Cl6, Si (CH3)3CHF2, and SiCl (CH3)2Si(CH3)3, which are key parameters for understanding the underlying processes in plasmas. The results obtained for other silane derivatives were also analyzed and discussed.MethodsThe measurements were conducted using the pulsed Townsend technique. In this technique, electrons generated by a laser under an electric field travel to the anode, inducing a charge on it. In the presence of a scavenger gas, electrons are captured, leading to a decrease in the rate of charge increase over time. The kinetic parameters were deduced from the shape of the pulse. The G4 method was used to obtain bond dissociation energies (BDEs).ResultsThis study determined the kinetic parameters for thermal electron attachment to Si2Cl6, Si (CH3)3CHF2, and SiCl (CH3)2Si(CH3)3 for the first time. The rate coefficients at 298 K were found to be 2.17 ± 0.04 × 10−9cm3s−1, 2.01 ± 0.09 × 10−12cm3s−1, and 8.05 ± 0.07 × 10−12cm3s−1, respectively. The corresponding activation energies were determined to be 0.37 ± 0.04 eV, 0.29 ± 0.03 eV, and 0.21 ± 0.01 eV for Si2Cl6, Si (CH3)3CHF2, and SiCl (CH3)2Si(CH3)3, respectively. The experiment was conducted over the temperature range of 298–378 K.ConclusionsThe findings of this study provide significant new insights into fundamental parameters such as rate coefficients and activation energies for thermal electron capture by chlorinated and fluorinated silane derivatives. These data contribute to advancing our understanding of thermal electron interactions with chlorosilanes, which can be utilized for controlling important species in the plasmas of various modern technologies.

Publisher

Wiley

Reference63 articles.

1. Electronic and Ionic Impact Phenomena

2. ChristophorouLG AndersonVE BirksJB.Atomic and molecular radiation physics.;1971.https://www.osti.gov/biblio/4635528

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3