HMDE‐FS: A homogeneous distributed ensemble feature selection framework based on resampling with/without replacement

Author:

Nosrati Vahid1,Rahmani Mohsen1ORCID

Affiliation:

1. Faculty of Engineering Arak University Arak Iran

Abstract

SummaryApplying ensemble feature selection (EFS) models in various problems has not been actively discussed, and there has been a lack of effort to make it applicable in the situations such as distributed environments. Due to restrictions of centralized algorithms such as their poor scalability in the high dimension data and also distributed nature of some data, using the traditional centralized computing for dealing with such problems may be inevitable. This paper aims to develop a homogenous distributed ensemble feature selection (HMDE‐FS) framework through a distributed resampling approach rather than a centralized one. The homogenous ensembles mainly operate along with a resampling process, so applying various methods to resampling can affect the performance of the model. Among various strategies, those with and without replacement are two of the main technique families, hence we investigated the efficiency of two well‐known with/without replacement techniques: bootstrapping (BS) and cross‐validation (CV) inspired method that we named crisscross (CC). The proposed HMDE‐FS approaches are tested on eight datasets, and the heavy experimental results illustrate that these methods considerably reduce runtime, while classification accuracy maintains its competitiveness.

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3