MicroRNA-451 Is Involved in the Self-renewal, Tumorigenicity, and Chemoresistance of Colorectal Cancer Stem Cells

Author:

Bitarte Nerea1,Bandres Eva1,Boni Valentina12,Zarate Ruth1,Rodriguez Javier2,Gonzalez-Huarriz Marisol1,Lopez Ines1,Javier Sola Jesus3,Alonso Marta M.2,Fortes Puri4,Garcia-Foncillas Jesus12

Affiliation:

1. Laboratory of Pharmacogenomics, Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain

2. Department of Oncology, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain

3. Department of Pathology, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain

4. Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain

Abstract

Abstract Many antitumor therapies affect rapidly dividing cells. However, tumor proliferation may be driven by cancer stem cells (CSCs), which divide slowly and are relatively resistant to cytotoxic drugs. Thus, many tumors may progress because CSCs are not sensitive to the treatment. In this work, we searched for target genes whose expression is involved in proliferation and chemoresistance of CSCs. Both of these processes could be controlled simultaneously by cell regulators such as microRNAs (miRNAs). Therefore, colonospheres with properties of CSCs were obtained from different colon carcinoma cells, and miRNA profiling was performed. The results showed that miR-451 was downregulated in colonspheres versus parental cells. Surprisingly, expression of miR-451 caused a decrease in self-renewal, tumorigenicity, and chemoresistance to irinotecan of colonspheres. We identified cyclooxygenase-2 (COX-2) as an indirect miR-451 target gene involved in sphere growth. Our results indicate that miR-451 downregulation allows the expression of the direct target gene macrophage migration inhibitory factor, involved in the expression of COX-2. In turn, COX-2 allows Wnt activation, which is essential for CSC growth. Furthermore, miR-451 restoration decreases expression of the ATP-binding cassette drug transporter ABCB1 and results in irinotecan sensitization. These findings correlate well with the lower expression of miR-451 observed in patients who did not respond to irinotecan-based first-line therapy compared with patients who did. Our data suggest that miR-451 is a novel candidate to circumvent recurrence and drug resistance in colorectal cancer and could be used as a marker to predict response to irinotecan in patients with colon carcinoma.

Funder

Fondo de Investigacion Sanitaria

RNAREG

Ministry of Science and Innovation under the program CONSOLIDER INGENIO 2010

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 240 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3