Experimental and finite element analysis of ballistic properties of composite armor made of alumina, carbon and UHMWPE

Author:

Mutu Halil Burak1,Özer Alaettin2ORCID

Affiliation:

1. Department of Mechanical Engineering Tokat Gaziosmanpaşa University Tokat Turkey

2. Department of Mechanical Engineering Yozgat Bozok University Yozgat Turkey

Abstract

AbstractThe performance of multi‐layer ceramic/composite ballistic armor consisting of Alumina, Carbon fiber, and Ultra High Molecular Weight Polyethylene (UHMWPE) under the impact of 7.62 × 51 M61 caliber armor‐piercing (AP) bullets was examined by experimental and finite element methods. The alumina ceramic thickness used in the experiments is 12 mm. The composite structure thickness used in all samples is 10 mm. Explicit dynamic analyses were also conducted using the Ls‐Dyna to verify the experimental studies. The analysis results were compared with experimental studies and evaluated by considering the damage status of the bullet and armor. According to ballistic test results, partial penetration was observed in all armor produced. The front ceramic layer caused corrosion of the bullet, and a mushrooming effect occurred on it. The carbon fiber layer has dramatically helped as an alternative or support to UHMWPE. Since the results obtained with the carbon fiber ratios used remain within the standards, it will not pose a problem regarding usage. On the contrary, using carbon fiber, which is relatively easier to produce and supply than UHMWPE and more economically suitable, will provide more significant benefits. Experimental and numerical studies have revealed consistent results for all armors.Highlights The effect of a 7.62 × 51 armor‐piercing bullet on ceramic/composite armor was examined. Carbon fiber and UHMWPE hybrid structure was created in different thicknesses. The carbon fiber layer has dramatically helped as an alternative or support to UHMWPE. Using carbon fiber, which is relatively easier to produce and supply than UHMWPE and is more economically suitable. Experimental and numerical studies have revealed consistent results for all armors.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3