Population structure, runs of homozygosity analysis and construction of single nucleotide polymorphism fingerprinting database of Longnan goat population

Author:

Ma Keyan12ORCID,Li Dengpan12,Qi Xingcai12,Li Qiao12,Wu Yi12,Song Juanjuan12,Zhang Yue12,Yang Hai12,Li Taotao12ORCID,Ma Youji12ORCID

Affiliation:

1. College of Animal Science and Technology Gansu Agricultural University Lanzhou China

2. Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation Lanzhou China

Abstract

AbstractThe Longnan goat (LN) is a local breed discovered during the third census of China's livestock and poultry genetic resources. In order to thoroughly comprehend the population traits, this research examined a total of 70 animals from three different goat populations, namely the LN goat, Nanjiang Brown goat (NJ), and Boer goat (Boer). Specific‐Locus Amplified Fragment Sequencing was employed to analyze genetic diversity, population structure, and selective sweep patterns. Additionally, individual DNA fingerprints were generated to provide detailed genetic profiles for each subject. A total of 643,868 single nucleotide polymorphisms (SNPs) were detected, with a majority located in intergenic and intronic regions. Genetic diversity analysis uncovered lower diversity within the LN population compared to the other two populations. The analysis of population structure unveiled significant genetic distance between LN and both NJ and Boer populations, with distinct clustering patterns observed. Moreover, genetic differentiation coefficients (FST) of 0.1019 and 0.0854 were determined between LN and Boer, as well as LN and NJ, respectively, indicating substantial genetic differentiation. Selective sweep analysis, combining FST and π ratio, identified several genes associated with growth and development, reproduction, hair color, and immunity that may serve as valuable candidates for marker‐assisted breeding. Furthermore, identification of 47,541 runs of homozygosity (ROHs) revealed non‐uniform distribution across chromosomes, with the highest frequency on chromosome 1 and the lowest on chromosome 27. Correlations between different inbreeding coefficients varied, with the highest observed between FHOM and FGRM, and the lowest between FROH >1.5Mb and FROH <500kb. A total of 46 candidate genes were annotated within high‐frequency ROH islands, primarily associated with biological processes such as reproduction, growth and development, and immunity. Finally, a DNA fingerprint, consisting of 371 highly polymorphic SNPs, was generated and presented in the form of a two‐dimensional code for convenient access. Based on the population structure analysis, LN goats have been found to have a distant genetic distance and a higher degree of differentiation from both the Boer and NJ populations. Evaluation of genetic diversity parameters and ROH analysis indicates that the LN population exhibits lower genetic diversity and shows signs of inbreeding. Our findings offer theoretical support for the identification of genetic resources within this population.

Publisher

Wiley

Subject

Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment,Food Science,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3