Affiliation:
1. School of Materials Science and Engineering University of Science and Technology Beijing Beijing the People's Republic of China
2. Institute of Nuclear and New Energy Technology Tsinghua University Beijing the People's Republic of China
Abstract
AbstractWith the rapid development of energy storage technology, solid‐state lithium batteries with high energy density, power density, and safety are considered as the ideal choice for the next generation of energy storage devices. Solid electrolytes have attracted considerable attention as key components of solid‐state batteries. Compared with inorganic solid electrolytes, solid polymer electrolytes have better flexibility, machinability, and more importantly, better contact with the electrode, and low interfacial impedance. However, its low ionic conductivity, narrow electrochemical stability window (ESW), and poor mechanical properties at room temperature limit its development and practical applications. In recent years, many studies have focused on improving the ionic conductivity of polymer electrolytes; however, few systematic studies and reviews have been conducted on their ESWs. A polymer electrolyte with wide electrochemical window will aid battery operation at a high voltage, which can effectively improve their energy density. Moreover, their stability toward lithium metal anode is also important. Therefore, this review summarizes the recent progress of solid polymer electrolytes on the ESW, discusses the factors affecting ESW of polymer electrolytes, and analyzes a strategy to broaden the window from the perspective of molecular interaction, polymer structural design, and interfacial tuning. The development trends of polymer electrolytes with wide electrochemical windows are also presented.image
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Materials Chemistry,Surfaces, Coatings and Films,Materials Science (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献