Effect of Ca2+ signal on the activity of key enzymes of carbon metabolism and related gene expression in yeast under high sugar fermentation

Author:

Xie Dongdong1ORCID,Zheng Jiaxin1,Sun Yingqi1,Li Xing1,Ren Shuncheng1

Affiliation:

1. Food Engineering Technology Research Center/Key Laboratory of Henan Province, School of Food Science and Technology Henan University of Technology Zhengzhou China

Abstract

AbstractBACKGROUNDSaccharomyces cerevisiae is a fungus widely used in the food industry and biofuel industry, whereas it is usually exposed to high sugar stress during the fermentation process. Ca2+ is a key second messenger of the cell, it can regulate cell metabolism. The present study investigated the effect of the Ca2+ signal on the activity of key enzymes of carbon metabolism and related gene expression in yeast under high sugar fermentation.RESULTSThe expression of genes encoding hexokinase was up‐regulated in the high sugar environment, the activity of hexokinase was increased, glucose transmembrane transport capacity was enhanced, the ability of glucose to enter into glycolytic metabolism was increased, and the expression of genes related to pentose phosphate metabolism, glycerol metabolism and trehalose metabolism was up‐regulated in the high glucose with Ca2+ group.CONCLUSIONCa2+ signal regulates the cellular metabolism of glycerol and trehalose and optimizes the allocation of carbon flow by regulating the key enzymes and related gene expression to enhance the resistance of yeast to high sugar stress. © 2024 Society of Chemical Industry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3