Circulating cardiac MicroRNAs safeguard against dilated cardiomyopathy

Author:

Cheng Xiaolei12,Jian Dongdong13,Xing Junyue14,Liu Cihang23,Liu Yong15,Cui Cunying1,Li Zhen1,Wang Shixing1,Li Ran1,Ma Xiaohan1,Wang Yingying1,Gu Xiaoping2,Ge Zhenwei1,Tang Hao14ORCID,Liu Lin1

Affiliation:

1. National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine Heart Center of Henan Provincial People's Hospital Central China Fuwai Hospital of Zhengzhou University Fuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular Diseases Zhengzhou China

2. Department of Anesthesiology Affiliated Drum Tower Hospital of Medical School of Nanjing University Nanjing China

3. Department of Biochemistry and Molecular Biology Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function School of Basic Medical Sciences Peking University Health Science Center Beijing China

4. Henan Key Laboratory of Chronic Disease Management Department of Health Management Center Henan Provincial People's Hospital Department of Health Management Center of Central China Fuwai Hospital Central China Fuwai Hospital of Zhengzhou University Zhengzhou China

5. Department of Physiology Shanxi Medical University Taiyuan China

Abstract

AbstractBackgroundCardiac‐resident or ‐enriched microRNAs (miRNAs) could be released into the bloodstream becoming circulating cardiac miRNAs, which are increasingly recognized as non‐invasive and accessible biomarkers of multiple heart diseases. However, dilated cardiomyopathy (DCM)‐associated circulating miRNAs (DACMs) and their roles in DCM pathogenesis remain largely unexplored.MethodsTwo human cohorts, consisting of healthy individuals and DCM patients, were enrolled for serum miRNA sequencing (10 vs. 10) and quantitative polymerase chain reaction validation (46 vs. 54), respectively. Rigorous screening strategy was enacted to define DACMs and their potentials for diagnosis. DCM mouse model, different sources of cardiomyocytes, adeno‐associated virus 9 (AAV9), gene knockout, RNAscope miRNA in situ hybridization, mRFP‐GFP‐LC3B reporter, echocardiography and transmission electron microscopy were adopted for mechanistic explorations.ResultsSerum miRNA sequencing revealed a unique expression pattern for DCM circulating miRNAs. DACMs miR‐26a‐5p, miR‐30c‐5p, miR‐126‐5p and miR‐126‐3p were found to be depleted in DCM circulation as well as heart tissues. Their expressions in circulation and heart tissues were proven to be correlated significantly, and a combination of these miRNAs was suggested potential values for DCM diagnosis. FOXO3, a predicted common target, was experimentally demonstrated to be co‐repressed within cardiomyocytes by these DACMs except miR‐26a‐5p. Delivery of a combination of miR‐30c‐5p, miR‐126‐5p and miR‐126‐3p into the murine myocardium via AAV9 carrying an expression cassette driven by cTnT promoter, or cardiac‐specific knockout of FOXO3 (Myh6‐CreERT2, FOXO3 flox+/+) dramatically attenuated cardiac apoptosis and autophagy involved in DCM progression. Moreover, competitively disrupting the interplay between DACMs and FOXO3 mRNA by specifically introducing their interacting regions into murine myocardium crippled the cardioprotection of DACMs against DCM.ConclusionsCirculating cardiac miRNA‐FOXO3 axis plays a pivotal role in safeguarding against myocardial apoptosis and excessive autophagy in DCM development, which may provide serological cues for DCM non‐invasive diagnosis and shed light on DCM pathogenesis and therapeutic targets.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3