Reinforcement learning in medical image analysis: Concepts, applications, challenges, and future directions

Author:

Hu Mingzhe12,Zhang Jiahan1ORCID,Matkovic Luke1,Liu Tian1,Yang Xiaofeng12ORCID

Affiliation:

1. Department of Radiation Oncology School of Medicine Emory University Atlanta Georgia USA

2. Department of Computer Science and Informatics Emory University Atlanta Georgia USA

Abstract

AbstractMotivationMedical image analysis involves a series of tasks used to assist physicians in qualitative and quantitative analyses of lesions or anatomical structures which can significantly improve the accuracy and reliability of medical diagnoses and prognoses. Traditionally, these tedious tasks were finished by experienced physicians or medical physicists and were marred with two major problems, low efficiency and bias.In the past decade, many machine learning methods have been applied to accelerate and automate the image analysis process. Compared to the enormous deployments of supervised and unsupervised learning models, attempts to use reinforcement learning in medical image analysis are still scarce. We hope that this review article could serve as the stepping stone for related research in the future.SignificanceWe found that although reinforcement learning has gradually gained momentum in recent years, many researchers in the medical analysis field still find it hard to understand and deploy in clinical settings. One possible cause is a lack of well‐organized review articles intended for readers without professional computer science backgrounds. Rather than to provide a comprehensive list of all reinforcement learning models applied in medical image analysis, the aim of this review is to help the readers formulate and solve their medical image analysis research through the lens of reinforcement learning.Approach & ResultsWe selected published articles from Google Scholar and PubMed. Considering the scarcity of related articles, we also included some outstanding newest preprints. The papers were carefully reviewed and categorized according to the type of image analysis task. In this article, we first reviewed the basic concepts and popular models of reinforcement learning. Then, we explored the applications of reinforcement learning models in medical image analysis. Finally, we concluded the article by discussing the reviewed reinforcement learning approaches’ limitations and possible future improvements.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Reference85 articles.

1. Deep Learning in Medical Image Analysis

2. MnihV KavukcuogluK SilverD et al Playing atari with deep reinforcement learning. In: arXiv 2013.

3. Human-level control through deep reinforcement learning

4. Mastering the game of Go without human knowledge

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3