Crushing behavior of CFRP/AL hybrid tubes under oblique lateral loading

Author:

Yang Hongyuan12,Ren Yiru12ORCID

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body Hunan University Changsha China

2. College of Mechanical and Vehicle Engineering Hunan University Changsha China

Abstract

AbstractThis work aims to research the oblique lateral crushing behavior of CFRP/AL hybrid tubes under different parameter configurations. First, a finite element model was established based on the maximum stress criterion and the traction‐separation law. The reliability of the numerical models for pure aluminum, pure composite, and hybrid tubes was verified by rigorous comparison with experimental data, respectively. Second, the influence of loading conditions and geometric characteristics on crashworthiness were studied. The results show that the damage modes of the hybrid tube under oblique lateral loading are mainly concentrated in the horizontal and vertical ends, specifically in the form of plastic hinge and fiber, matrix fracture. The CFRP layers has positive effect on improving the specific energy absorption (SEA). High ratio thickness of aluminum tubes can effectively improve the energy absorption (EA) and crush force efficiency (CFE). It is found that the sandwich structure is not conducive to resist lateral crushing, while the CFRP without external constraints can absorb more impact energy.Highlights The oblique lateral crushing behavior of CFRP/AL hybrid tube was studied. A numerical simulation method was proposed and verified. The effects of loading angle, fiber layers and AL thickness were studied. The hybrid ratio and hybrid method were designed and discussed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3