Mixed attention and regularized COVID‐19 network: An approach to detection of COVID‐19 with chest x‐ray images

Author:

Das Dolly1ORCID,Biswas Saroj Kumar1,Bandyopadhyay Sivaji1

Affiliation:

1. Department of Computer Science and Engineering National Institute of Technology Silchar India

Abstract

AbstractCoronavirus Disease 2019 (COVID‐19) has led to a global pandemic in the year 2020 and the cases are dynamically increasing and active all over the world. COVID‐19 is caused due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‐CoV‐2). It is a human‐to‐human transmissible disease which has severely affected people especially with weaker immunity, and is detected through Reverse Transcription Polymerase Chain Reaction (RT‐PCR). RT‐PCR is a lethargic process and therefore intelligent systems are proposed which uses chest images for early detection of COVID‐19. This paper proposes a regularized and attentive intelligent system called ‘Mixed Attention & Regularized COVID‐19 Network (MARCOV19‐Net)’ for detection of COVID‐19 using chest X‐Ray images. The performance of MARCOV19‐Net is compared with VGG‐16, Regularized COVID‐19 Deep Convolutional Network (RCOV19‐DCNet) and Mixed Attention and unregularized COVID‐19 Network (MACOV19‐Net), and with other state‐of‐the‐art models. MARCOV19‐Net has achieved the highest F‐score, ROC and AUC of 98.76%, 99.4% and 99.6%, respectively.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3