Reconstitution and characterization of BRAF in complex with 14‐3‐3 and KRAS4B on nanodiscs

Author:

Liu Ningdi F.12,Enomoto Masahiro1,Marshall Christopher B.1,Ikura Mitsuhiko12ORCID

Affiliation:

1. Princess Margaret Cancer Centre University Health Network Toronto Ontario Canada

2. Department of Medical Biophysics University of Toronto Toronto Ontario Canada

Abstract

AbstractRAF kinases are key components of the RAS‐MAPK signaling pathway, which drives cell growth and is frequently overactivated in cancer. Upstream signaling activates the small GTPase RAS, which recruits RAF to the cell membrane, driving a transition of the latter from an auto‐inhibited monomeric conformation to an active dimer. Despite recent progress, mechanistic details underlying RAF activation remain unclear, particularly the role of RAS and the membrane in mediating this conformational rearrangement of RAF together with 14‐3‐3 to permit RAF kinase domain dimerization. Here, we reconstituted an active complex of dimeric BRAF, a 14‐3‐3 dimer and two KRAS4B on a nanodisc bilayer and verified that its assembly is GTP‐dependent. Biolayer interferometry (BLI) was used to compare the binding affinities of monomeric versus dimeric full‐length BRAF:14‐3‐3 complexes for KRAS4B‐conjugated nanodiscs (RAS‐ND) and to investigate the effects of membrane lipid composition and spatial density of KRAS4B on binding. 1,2‐Dioleoyl‐sn‐glycero‐3‐phospho‐L‐serine (DOPS) and higher KRAS4B density enhanced the interaction of BRAF:14‐3‐3 with RAS‐ND to different degrees depending on BRAF oligomeric state. We utilized our reconstituted system to dissect the effects of KRAS4B and the membrane on the kinase activity of monomeric and dimeric BRAF:14‐3‐3 complexes, finding that KRAS4B or nanodiscs alone were insufficient to stimulate activity, whereas RAS‐ND increased activity of both states of BRAF. The reconstituted assembly of full‐length BRAF with 14‐3‐3 and KRAS on a cell‐free, defined lipid bilayer offers a more holistic biophysical perspective to probe regulation of this multimeric signaling complex at the membrane surface.

Funder

Princess Margaret Cancer Foundation

Canadian Cancer Society Research Institute

Canada Research Chairs

Canadian Institutes of Health Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3