Graphene: Preparation, tailoring, and modification

Author:

Li Mingyao1,Yin Bing1,Gao Chunyan2,Guo Jie2,Zhao Cong2,Jia Chuancheng12ORCID,Guo Xuefeng12ORCID

Affiliation:

1. Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering Peking University Beijing China

2. Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering Nankai University Tianjin China

Abstract

AbstractGraphene is a 2D material with fruitful electrical properties, which can be efficiently prepared, tailored, and modified for a variety of applications, particularly in the field of optoelectronic devices thanks to its planar hexagonal lattice structure. To date, graphene has been prepared using a variety of bottom–up growth and top–down exfoliation techniques. To prepare high‐quality graphene with high yield, a variety of physical exfoliation methods, such as mechanical exfoliation, anode bonding exfoliation, and metal‐assisted exfoliation, have been developed. To adjust the properties of graphene, different tailoring processes have been emerged to precisely pattern graphene, such as gas etching and electron beam lithography. Due to the differences in reactivity and thermal stability of different regions, anisotropic tailoring of graphene can be achieved by using gases as the etchant. To meet practical requirements, further chemical functionalization at the edge and basal plane of graphene has been extensively utilized to modify its properties. The integration and application of graphene devices is facilitated by the combination of graphene preparation, tailoring, and modification. This review focuses on several important strategies for graphene preparation, tailoring, and modification that have recently been developed, providing a foundation for its potential applications.

Publisher

Wiley

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3