Dynamic response of GFRP/Nomex honeycomb sandwich panels subjected to multiple hail impacts – An experimental study

Author:

Sun Yigang1,Xu Zhenkun1ORCID,Deng Yunfei1

Affiliation:

1. College of Aeronautical Engineering Civil Aviation University of China Tianjin P. R. China

Abstract

AbstractNowadays, more and more aircraft components are made of composite sandwich structures, and ice impacts are prone to cause internal damage to composite sandwich structures, so it is crucial to study the impact of hail on composite sandwich structures. Since hail impacts may occur several times at a single point, an experimental approach was used to investigate the dynamic response of GFRP/Nomex honeycomb sandwich panels under multiple hail impacts. The dynamic response of the structure was investigated in terms of response rate and deflection‐profile curves using 3D digital image correlation methods, and the effects of impact energy, hail size, and number of impacts on the impact resistance of the honeycomb sandwich structure were explored. The results show that the dynamic response process of sandwich panels can be categorized into the ball‐and‐crown phase, the rebound phase, and the vibration phase. Under the same impact energy, the impact of small‐sized hailstones is more threatening to honeycomb sandwich panels. As the number of impacts increases, the maximum deflection value of the back panel first increases uniformly, and when the layered damage area reaches the threshold value, fiber stripping occurs, and the increment of the maximum deflection value increases significantly.Highlights Since hail impacts may occur several times in real situations, this study conducted multiple impact experiments for one impact site. The dynamic response and damage pattern of the GFRP/Nomex honeycomb sandwich panels under multiple hail impacts were also investigated. The dynamic response process of GFRP/Nomex honeycomb sandwich panels was categorized into three phases: ball‐crown stage, rebound stage, and vibration stage. With the increase of the number of impacts, fiber stripping and fiber break damage began to occur when the layered damage area of the panel reached the threshold value. The honeycomb core has three main failure modes: cell wall folds, cell wall fracture, and cell wall debonding at the TGPW interface. Small‐diameter hails pose a more significant threat of damage to honeycomb sandwich panels at the same impact energy.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasi-static compression response of foldcore sandwich structure based on core evolution;Mechanics of Advanced Materials and Structures;2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3