The role of autophagy in SIM mediated anti‐inflammatory osteoclastogenesis through NLRP3 signaling pathway

Author:

Cheng Yuting12ORCID,Jin Wenjun2,Zheng Lin2,Huang Xiaolin3,Luo Shanshan2,Hong Wei4,Liao Jian2,Samruajbenjakun Bancha1ORCID,Leethanakul Chidchanok1

Affiliation:

1. Faculty of Dentistry Prince of Songkla University Hat Yai Thailand

2. School/Hospital of Stomatology Guizhou Medical University Guiyang China

3. Hospital of Stomatology Zhongshan Guangdong China

4. Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education Guizhou Medical University Guiyang China

Abstract

AbstractBackgroundInflammatory bone resorption is a prominent risk factor for implantation failure. Simvastatin (SIM) has anti‐inflammatory effects independent of cholesterol lowering and reduces osteoclastogenesis by decreasing both the number and activity of osteoclasts. However, the specific mechanism of inflammatory bone loss alleviation by SIM remains to be elucidated. We hypothesized that SIM relieves inflammatory bone loss by modulating autophagy and suppressing the NOD‐like receptor family pyrin domain‐containing protein 3 (NLRP3) signaling pathway.Methods and resultsRAW264.7 cells were stimulated by lipopolysaccharide (LPS) after being pretreated with various concentrations of SIM. Osteoclast (OC) differentiation, formation and activity were evaluated by tartrate‐resistant acid phosphatase staining, F‐actin ring staining and bone resorption pit assays, respectively. We observed autophagosomes by transmission electron microscopy. Then NLRP3 inhibitor MCC950 was used to further explore the corresponding molecular mechanism underlying anti‑inflammatory bone resorption, the expression of autophagy‐related proteins and NLRP3 signaling pathway factors in pre‐OCs were evaluated by western blot analysis, and the expression of OC‑specific molecules was analyzed using reverse transcription‑quantitative polymerase chain reaction. The results showed that SIM decreased the expression of tumor necrosis factor‐α, whereas increased Interleukin‐10. In addition, SIM inhibited LPS‐induced OC differentiation, formation, bone resorption activity, the level of autophagosomes, and OC‑specific markers. Furthermore, SIM significantly suppressed autophagy by downregulating LC3II, Beclin1, ATG7, and NLRP3‐related proteins expression while upregulating P62 under inflammatory conditions.ConclusionsSIM may reduce autophagy secretion to attenuate LPS‐induced osteoclastogenesis and the NLRP3 signaling pathway participates in this process, thus providing theoretical basis for the application of this drug in peri‐implantitis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3