An adaptive fractional order optimizer based optimal tilted controller design for artificial ventilator

Author:

Acharya Debasis1,Das Dushmanta Kumar2ORCID

Affiliation:

1. Department of Computer Science and Engineering Brainware University Kolkata West Bengal India

2. Department of Electrical and Electronics Engineering National Institute of Technology Nagaland Dimapur India

Abstract

AbstractArtificial ventilators are vital respiratory support systems in the field of medical care, especially for patients in critical condition. It is crucial to make sure the ventilator keeps the intended airway pressure because variations might be harmful to the brain and lungs. Thus, achieving accurate pressure tracking is a primary objective in designing optimal controllers for pressure‐controlled ventilators (PCVs). To address this need, a novel approach is proposed: a mixed integer tilted fractional order integral and integer order derivation controller tailored for PCV systems. The gains of different parameters of the proposed controller are optimized using an adaptive chaotic search fractional order class topper optimization algorithm, augmented with a Gaussian‐based mutation operator. Moreover, the controller is designed to minimize oscillations in its output signal, thereby mitigating physical risks and reducing the size of actuators required. The efficacy of the optimized controller is further examined across various scenarios, including different lung resistances and compliances across different age groups of patients. Additionally, the impact of endotracheal tube resistance on air pressure is assessed as a potential disturbance in the PCV system. Through comprehensive testing, the proposed controller demonstrates superior performance in accurately tracking airway pressure to the desired levels. Across all evaluated cases, the proposed controller structure and accompanying algorithm outperform existing solutions. Notably, improvements are observed in system response time, overshoot, and settling time. This underscores the significance of employing advanced control strategies to enhancing the functionality and safety of PCV systems in medical settings.

Publisher

Wiley

Reference40 articles.

1. Tidal volume transmission during non‐synchronized nasal intermittent positive pressure ventilation via RAM® cannula;Matlock DN;J Perinatol,2019

2. State of the art in conventional mechanical ventilation;Keszler M;J Perinatol,2009

3. Autonomous control of ventilation through closed‐loop adaptive respiratory pacing;Siu R;Sci Rep,2020

4. A control system for mechanical ventilation of passive and active subjects;Tehrani FT;Comput Methods Programs Biomed,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3