Affiliation:
1. Department of Biological Sciences George Washington University Washington DC USA
2. Department of Biology Georgetown University Washington DC USA
Abstract
AbstractClimate‐driven ecosystem shifts occur through turnover in the foundation species which structure the landscape. Therefore, to predict the fate of areas undergoing climate‐driven ecosystem shifts, one approach is to characterize ecological and evolutionary responses of foundation species along dynamic environmental gradients. One such gradient is the ecotone between tidal marshes and maritime forests in coastal areas of the US Mid‐Atlantic region where accelerated sea‐level rise and coastal storms of increased frequency and intensity are driving forest dieback and inland marsh migration. Mid‐Atlantic tidal marshes are structured by marsh grasses which act as foundation species, and these grasses exhibit trait variation across their distribution from established marsh interior to their inland migration front. We conducted a reciprocal transplant experiment with Spartina patens, a dominant high marsh grass and foundation species, between established populations in the high marsh and range edge populations in the forest understory at three Mid‐Atlantic sites. We monitored environmental conditions in marsh and forest understory habitats, measured plant traits (above‐ and belowground biomass, specific leaf area, leaf N and C concentrations) in transplanted and reference non‐transplanted individuals, and used microsatellite markers to determine the genetic identity of transplants to quantify clonality between habitats and sites. Individuals transplanted into the forest understory exhibited a plastic shift in resource allocation to aboveground structures associated with light acquisition, with shifts in transplants making them more morphologically similar to reference individuals sampled from the forest habitat. Clonal diversity and genetic distance among transplants were relatively high at two of three sites, but individuals at all sites exhibited trans‐habitat plasticity regardless of clonal diversity or a lack thereof. Individuals grown in the forest understory showed lower vegetative and reproductive fitness. Nevertheless, the trait plasticity exhibited by this species allowed individuals from the forest that were transplanted into the marsh to recoup significant biomass in only a single growing season. We predict high plasticity will facilitate the persistence of colonizing S. patens individuals under suboptimal forest shade conditions until forest dieback increases light availability, ultimately promoting continued inland migration of this foundation species under sea‐level rise.
Funder
Division of Environmental Biology